生成式人工智能的教育应用与展望——以ChatGPT系统为例Educational Application and Prospect of Generative Artificial Intelligence:Taking ChatGPT System as An Example
卢宇,余京蕾,陈鹏鹤,李沐云
摘要(Abstract):
生成式人工智能(Generative Artificial Intelligence)旨在利用人工智能技术自动化生成文本、图像、视频、音频等多模态数据,受到教育领域的广泛关注。其中,ChatGPT系统因其良好的自然语言理解和生成能力,体现出较高的多领域应用潜力。本研究以ChatGPT作为主要对象,基于其四项核心能力,即启发性内容生成能力、对话情境理解能力、序列任务执行能力和程序语言解析能力,探讨在教师教学、学习过程、教育评价、学业辅导四个方面的潜在教育应用。在此基础上,在真实系统中进行了习题生成、自动解题、辅助批阅等教育应用的初步验证。最后,本文进一步探讨了以ChatGPT为代表的生成式人工智能在教育应用中所面临的局限和对教育的启示。
关键词(KeyWords): 生成式人工智能;ChatGPT;大语言模型;人工智能教育应用
基金项目(Foundation): 北京市教育科学“十四五”规划2021年度重点课题“人工智能驱动的新一代智能导学系统构建研究”(课题编号:CHAA21036)的研究成果
作者(Author): 卢宇,余京蕾,陈鹏鹤,李沐云
DOI: 10.13541/j.cnki.chinade.20230301.001
参考文献(References):
- 国务院.(2017-07-20).新一代人工智能发展规划(国发[2017]35号).中华人民共和国中央人民政府网站.http://www.gov.cn/zhengce/content/2017-07/20/content5211996.htm
- Askell,A.,Bai,Y.,Chen,A.,Darin,D.,Ganguli,D.,Henighan,T.,Jones,A.,Joseph,N.,Mann,B.,DasSarma,N.,Elhage,N.,Hatfield-Dodds,Z.,Hernandez,D.,Kernion,J.,Ndousse,K.,Olsson,C.,Amodei,D.,Brown,T.,Clark,J.,...Olah,C.(2021).A general language assistant as a laboratory for alignment.arXiv preprint arXiv,2112.00861.
- Bommasani,R.,Hudon,D.A.,Adeli,E.,Altman,R.,Arora,S.,Arx,S.,Bernstein,M.,Bohg,J.,Bosselut,A.,Brunskill,E.,Brynjolfsson,E.,Buch,S.,Card,D.,Castellon,R.,Chatterji,N.,Chen,A.,Creel,K.,Davis,J.,Demszky,D.,...Liang,P.(2021).On the opportunities and risks of foundation models.arXiv preprint arXiv,2021:2108.07258.
- Brown,T.,Mann,B.,Ryder,N.,Subbiah,M.,Kaplan,J.,Dhariwal,P.,Neelakantan,A.,Shyam,P.,Sastry,G.,Askell,A.,Agarwal,S.,Herbert-Voss,A.,Krueger,G.,Henighan,T.,Child,R.,Ramesh,A.,Ziegler,D.,Wu,J.,Winter,C.,...Amodei,D.(2020).Language models are few-shot learners.Advances in neural information processing systems,33,1877-1901.
- Christiano,P.F.,Leike,J.,Brown,T.,Martic,M.,Legg,S.,&Amodei,D.(2017).Deep reinforcement learning from human preferences.Advances in neural information processing systems,30.
- Devlin,J.,Chang,W.,Lee,K.,&Toutanova,K.(2019).Bert:Pre-training of deep bidirectional transformers for language understanding.Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,4171-4186.
- Ho,J.,Jain,A.,&Abbeel,P.(2020).Denoising diffusion probabilistic models.AdvancesinNeuralInformationProcessingSystems,33,6840-6851.
- Kosinski,M.(2023).Theory of Mind May Have Spontaneously Emerged in Large Language Models.arXiv preprint arXiv,2302.02083.
- OpenAI.(2022-04-06).DALL·E 2.OpenAI.https://openai.com/dall-e-2/
- OpenAI.(2022-11-30).ChatGPT:Optimizing Language Models for Dialogue.OpenAI.https://openai.com/blog/chatgpt/
- Ouyang,L.,Wu,J.,Jiang,X.,Almeida,D.,Wainwright,C.,Mishkin,P.,Zhang,C.,Agarwal,S.,Slama,K.,Ray,A.,Schulman,J.,Hilton,J.,Kelton,F.,Miller,L.,Simens,M.,Askell,A.,Welinder,P.,Christiano,P.,...Lowe,R.(2022).Training language models to follow instructions with human feedback.arXiv preprint arXiv,2203.02155.
- Roy,S.,&Dan,R.(2015).Solving general arithmetic word problems.Proceedings of the Conference on Empirical Methods in Natural Language Processing,15,1743-1752.
- Radford,A.,Narasimhan,K.,Salimans,T.,&Sutskever,I.(2018).Improving language understanding by generative pre-training.
- Radford,A.,Wu,J.,Child,R.,Luan,D.,Amodei,D.,&Sutskever,I.(2019).Language models are unsupervised multitask learners.OpenAI blog,1(8),9.
- Raffel,C.,Shazeer,N.,Roberts,A.,Lee,K.,Narang,S.,Matena,M.,Zhou,Y.,Li,Wei.,&Liu,P.(2019).Exploring the limits of transfer learning with a unified text-to-text transformer.Journal of Machine Learning Research,21,1-67.
- Schulman,J.,Wolski,F.,Dhariwal,P.,Radford,A.,&Klimov,O.(2017).Proximal policy optimization algorithms.arXiv preprint arXiv,1707.06347.
- Vaswani,A.,Shazeer,N.,Parmar,N.,Uszkoreit,J.,Jones,L.,Gomez,A.,Kaiser,L.,&Polosukhin,I.(2017).Attention is all you need.Advances in Neural Information Processing Systems,30.
- Wei,J.,Bosma,M.,Zhao,Y.,Guu,K.,Yu,W.,Lester,B.,Du,N.,Dai,A.M.,&Le,V.(2021).Finetuned language models are zero-shot learners.International Conference on Learning Representations,10.
- Wei,J.,Wang,X.,Schuurmans,D.,Bosma,M.,Chi,E.,Le,Q.,&Zhou,D.(2022).Chain-of-thought prompting elicits reasoning in large language models.Advances in Neural Information Processing Systems,36.
- Zhang,Z.,Han,X.,Liu,Z.,Jiang,X.,Sun,M.,&Liu,Q.(2019).ERNIE:Enhanced Language Representation with Informative Entities.Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,1441-1451.